Kinetic Study of Lignocellulosic Biomasses Pyrolysis Using Thermogravimetric Analysis

  • Hiba Aouled Mhemed Joint Unit GEPEA, Department of Energy Systems and Environment, IMT Atlantique, 4 rue Alfred-Kastler BP 20722, 44307 Nantes Cedex 3, France
  • Jean-francois largeau Joint Unit GEPEA, Department of Energy Systems and Environment, IMT Atlantique, 4 rue Alfred-Kastler BP 20722, 44307 Nantes Cedex 3, France
  • Sana Kordoghli Research Laboratory for Sciences and Technologies of Environment, High Institute of Sciences and Technologies of Environment, Borj Cedria, Carthage University, Tunisia
  • Mylène Marin Gallego CNRS Joint Unit GEPEA, Department of Energy Systems and Environment, IMT Atlantique, 4 rue Alfred-Kastler BP 20722, 44307 Nantes Cedex 3, France
  • Fethi Zagrouba Research Laboratory for Sciences and Technologies of Environment, High Institute of Sciences and Technologies of Environment, Borj Cedria, Carthage University, Tunisia National School of Engineers
  • Mohand Tazerout CNRS Joint Unit GEPEA, Department of Energy Systems and Environment, IMT Atlantique, 4 rue Alfred-Kastler BP 20722, 44307 Nantes Cedex 3, France

Abstract

In this work, a kinetic analysis was performed to investigate the energy potential of abundant agricultural residues: date residues, olive stones, and spent coffee grounds. The TGA experiments were carried out from room temperature to 700°C under an inert atmosphere at different heating rates of 5, 10, 15 and 20°C.min-1. Friedman’s method seems to be the most appropriate because it contains no mathematical approximation that reduces the systematic error. The average activation energies obtained with the Friedman model are 159, 168, 201, and 170 kJ.mol-1 for date stems, date seeds, olive stone, and spent coffee grounds, respectively.


Keywords; agricultural residues, pyrolysis, TGA, model-free, activation energy

References

[1] Kraiem N, Lajili M, Limousy L, Said R, Jeguirim M. Energy recovery from Tunisian agri-food wastes: Evaluation of combustion performance and emissions characteristics of green pellets prepared from tomato residues and grape marc. Energy 2016;107:409–18. https://doi.org/10.1016/j.energy.2016.04.037.
[2] Motghare KA, Rathod AP, Wasewar KL, Labhsetwar NK. Comparative study of different waste biomass for energy application. Waste Manag 2016;47:40–45.
[3] GIFruits. Groupement Interprofessionnel des Fruits – Tunisie –www.gifruits.com. Accessed 2016 January 2017. http://gifruits.com/?p=3048&lang=fr (accessed August 1, 2018).
[4] ONH. Office National de l’Huile. Http://WwwOnhComTn/ 2015.
[5] Buratti C, Barbanera M, Lascaro E, Cotana F. Optimization of torrefaction conditions of coffee industry residues using desirability function approach. Waste Manag 2018;73:523–34. https://doi.org/10.1016/j.wasman.2017.04.012.
[6] ICO. International Coffee Organization, http://www.ico.org/ 2018.
[7] Mohammed IY, Abakr YA, Kazi FK, Yusup S, Alshareef I, Chin SA. Comprehensive Characterization of Napier Grass as a Feedstock for Thermochemical Conversion. Energies 2015;8:3403–17. https://doi.org/10.3390/en8053403.
[8] Bohli T, Ouederni A, Fiol N, Villaescusa I. Evaluation of an activated carbon from olive stones used as an adsorbent for heavy metal removal from aqueous phases. Comptes Rendus Chim 2015;18:88–99.
[9] Dhyani V, Bhaskar T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 2018;129:695–716. https://doi.org/10.1016/j.renene.2017.04.035.
[10] Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, et al. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renew Sustain Energy Rev 2018;82:2705–15. https://doi.org/10.1016/j.rser.2017.09.113.
[11] Fernandez-Lopez M, Pedrosa-Castro GJ, Valverde JL, Sanchez-Silva L. Kinetic analysis of manure pyrolysis and combustion processes. Waste Manag 2016;58:230–40. https://doi.org/10.1016/j.wasman.2016.08.027.
[12] Heydari M, Rahman M, Gupta R. Kinetic study and thermal decomposition behavior of lignite coal. Int J Chem Eng 2015;2015.
[13] Bhavanam A, Sastry RC. Kinetic study of solid waste pyrolysis using distributed activation energy model. Bioresour Technol 2015;178:126–31. https://doi.org/10.1016/j.biortech.2014.10.028.
[14] Jayaraman K, Gokalp I, Petrus S, Belandria V, Bostyn S. Energy recovery analysis from sugar cane bagasse pyrolysis and gasification using thermogravimetry, mass spectrometry and kinetic models. J Anal Appl Pyrolysis 2018;132:225–36. https://doi.org/10.1016/j.jaap.2018.02.003.
[15] Khiari B, Jeguirim M. Pyrolysis of Grape Marc from Tunisian Wine Industry: Feedstock Characterization, Thermal Degradation and Kinetic Analysis. Energies 2018;11:730.
[16] Martín-Lara MA, Ronda A, Blázquez G, Pérez A, Calero M. Pyrolysis kinetics of the lead-impregnated olive stone by non-isothermal thermogravimetry. Process Saf Environ Prot 2018;113:448–58. https://doi.org/10.1016/j.psep.2017.11.015.
[17] Fermoso J, Mašek O. Thermochemical decomposition of coffee ground residues by TG-MS: A kinetic study. J Anal Appl Pyrolysis 2018;130:358–367.
[18] Sait HH, Hussain A, Salema AA, Ani FN. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour Technol 2012;118:382–389.
[19] Ceylan S. Kinetic analysis on the non-isothermal degradation of plum stone waste by thermogravimetric analysis and integral Master-Plots method. Waste Manag Res 2015;33:345–52. https://doi.org/10.1177/0734242x15574590.
[20] Guo F, Dong Y, Lv Z, Fan P, Yang S, Dong L. Pyrolysis kinetics of biomass (herb residue) under isothermal condition in a micro fluidized bed. Energy Convers Manag 2015;93:367–376.
[21] Gai C, Dong Y, Zhang T. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresour Technol 2013;127:298–305. https://doi.org/10.1016/j.biortech.2012.09.089.
[22] Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy 2012;97:491–7. https://doi.org/10.1016/j.apenergy.2011.12.056.
[23] Luo G, Chandler DS, Anjos LCA, Eng RJ, Jia P, Resende FLP. Pyrolysis of whole wood chips and rods in a novel ablative reactor. Fuel 2017;194:229–38. https://doi.org/10.1016/j.fuel.2017.01.010.
[24] Nasser R, Salem M, Hiziroglu S, Al-Mefarrej H, Mohareb A, Alam M, et al. Chemical Analysis of Different Parts of Date Palm (Phoenix dactylifera L.) Using Ultimate, Proximate and Thermo-Gravimetric Techniques for Energy Production. Energies 2016;9:374. https://doi.org/10.3390/en9050374.
[25] Sánchez F, San Miguel G. Improved fuel properties of whole table olive stones via pyrolytic processing. Biomass Bioenergy 2016;92:1–11. https://doi.org/10.1016/j.biombioe.2016.06.001.
[26] Wang H, Wang X, Cui Y, Xue Z, Ba Y. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism. Bioresour Technol 2018;263:444–9. https://doi.org/10.1016/j.biortech.2018.05.040.
[27] Kaur R, Gera P, Jha MK, Bhaskar T. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresour Technol 2018;250:422–8. https://doi.org/10.1016/j.biortech.2017.11.077.
[28] Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007;86:1781–8. https://doi.org/10.1016/j.fuel.2006.12.013.
[29] Prati L, Bergna D, Villa A, Spontoni P, Bianchi CL, Hu T, et al. Carbons from second generation biomass as sustainable supports for catalytic systems. Catal Today 2018;301:239–43. https://doi.org/10.1016/j.cattod.2017.03.007.
[30] Liew RK, Chong MY, Osazuwa OU, Nam WL, Phang XY, Su MH, et al. Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation. Res Chem Intermed 2018;44:3849–65. https://doi.org/10.1007/s11164-018-3388-y.
[31] Eom I-Y, Kim J-Y, Kim T-S, Lee S-M, Choi D, Choi I-G, et al. Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass. Bioresour Technol 2012;104:687–94. https://doi.org/10.1016/j.biortech.2011.10.035.
[32] Vassilev SV, Vassileva CG, Song Y-C, Li W-Y, Feng J. Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel 2017;208:377–409. https://doi.org/10.1016/j.fuel.2017.07.036.
[33] Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 2014;105:143–50. https://doi.org/10.1016/j.jaap.2013.10.013.
[34] Yuan X, He T, Cao H, Yuan Q. Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods. Renew Energy 2017;107:489–96. https://doi.org/10.1016/j.renene.2017.02.026.
[35] Hadoun H, Sadaoui Z, Souami N, Sahel D, Toumert I. Characterization of mesoporous carbon prepared from date stems by H3PO4 chemical activation. Appl Surf Sci 2013;280:1–7. https://doi.org/10.1016/j.apsusc.2013.04.054.
[36] Fadhil AB, Alhayali MA, Saeed LI. Date (Phoenix dactylifera L.) palm stones as a potential new feedstock for liquid bio-fuels production. Fuel 2017;210:165–76. https://doi.org/10.1016/j.fuel.2017.08.059.
[37] Ronda A, Martín-Lara MA, Calero M, Blázquez G. Complete use of an agricultural waste: Application of untreated and chemically treated olive stone as biosorbent of lead ions and reuse as fuel. Chem Eng Res Des 2015;104:740–51. https://doi.org/10.1016/j.cherd.2015.10.021.
[38] Kaur R, Gera P, Jha MK, Bhaskar T. Pyrolysis kinetics and thermodynamic parameters of castor ( Ricinus communis ) residue using thermogravimetric analysis. Bioresour Technol 2018;250:422–8. https://doi.org/10.1016/j.biortech.2017.11.077.
[39] Lopez-Velazquez MA, Santes V, Balmaseda J, Torres-Garcia E. Pyrolysis of orange waste: A thermo-kinetic study. J Anal Appl Pyrolysis 2013;99:170–7. https://doi.org/10.1016/j.jaap.2012.09.016.
[40] Özsin G, Pütün AE. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR. Waste Manag 2017;64:315–26. https://doi.org/10.1016/j.wasman.2017.03.020.
[41] Ceylan S. Kinetic analysis on the non-isothermal degradation of plum stone waste by thermogravimetric analysis and integral Master-Plots method. Waste Manag Res 2015;33:345–52. https://doi.org/10.1177/0734242X15574590.
[42] Aboulkas A, Nadifiyine M, Benchanaa M, Mokhlisse A. Pyrolysis kinetics of olive residue/plastic mixtures by non-isothermal thermogravimetry. Fuel Process Technol 2009;90:722–728.
[43] Mishra RK, Mohanty K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol 2018;251:63–74.
[44] Chandrasekaran A, Ramachandran S, Subbiah S. Determination of kinetic parameters in the pyrolysis operation and thermal behavior of Prosopis juliflora using thermogravimetric analysis. Bioresour Technol 2017;233:413–422.
[45] da Silva JCG, Alves JLF, Galdino WV de A, Andersen SLF, de Sena RF. Pyrolysis kinetic evaluation by single-step for waste wood from reforestation. Waste Manag 2018;72:265–73. https://doi.org/10.1016/j.wasman.2017.11.034.
[46] Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 1956;57:217–221.
[47] Ozawa T. A New Method of Analyzing Thermogravimetric Data. Bull Chem Soc Jpn 1965;38:1881–6. https://doi.org/10.1246/bcsj.38.1881.
[48] Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem 1957;29:1702–1706.
[49] Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp 1964;6:183–95. https://doi.org/10.1002/polc.5070060121.
[50] Miura K, Maki T. A Simple Method for Estimating f(E) and k0 ( E ) in the Distributed Activation Energy Model. Energy Fuels 1998;12:864–9. https://doi.org/10.1021/ef970212q.
[51] Ghorbannezhad P, Firouzabadi MD, Ghasemian A, de Wild PJ, Heeres HJ. Sugarcane bagasse ex-situ catalytic fast pyrolysis for the production of Benzene, Toluene and Xylenes (BTX). J Anal Appl Pyrolysis 2018;131:1–8. https://doi.org/10.1016/j.jaap.2018.02.019.
Published
2020-06-24
How to Cite
AOULED MHEMED, Hiba et al. Kinetic Study of Lignocellulosic Biomasses Pyrolysis Using Thermogravimetric Analysis. International Journal of Biomass and Renewables, [S.l.], v. 9, n. 1, p. 25-41, june 2020. ISSN 2289-1692. Available at: <http://myjms.moe.gov.my/index.php/ijbr/article/view/7867>. Date accessed: 11 aug. 2020.