CHROMIUM REMOVAL FROM TANNERY WASTEWATER: A REVIEW

  • Aminu Isiya Dabai Department of Civil Engineering, Bayero University Kano, Nigeria
  • Kasim Mohammed Department of Civil Engineering Technology, Federal Polytechnic, Kaura Namoda, Nigeria

Abstract

Tanning process generates high strength wastewater containing heavy metals, nutrients, organic and inorganic contaminants, which may adversely affect public health and the environment. The wastewater contains considerable amounts of heavy metals including Cr(VI) which is carcinogenic, mutagenic and teratogenic, and persistent in the environment. Several physico-chemical treatment approaches were employed in tannery wastewater treatment and proved to considerably reduce the level of toxic Cr and other pollutants to low concentrations. Despite the capabilities of physico-chemical treatment methods in treating high concentrations of toxic effluents, they are associated with setbacks including low removal efficiencies, high cost of chemicals, high energy requirement as well as low nutrients removal from the wastewater stream. Microalgal wastewater treatment systems can play an important role in bioremediation of tannery effluent and are considered as low-cost, efficient treatment alternatives that can potentially remove organic and inorganic contaminants, heavy metals, and possibly reduce the toxic Cr (VI) to a much less toxic Cr (III), especially when coupled with activated carbon.
Keywords: microalgae, effluent, chromium, activated sludge, absorption, heavy metals

References

[1] W. Bank, ‘Tanning and Leather Finishing’, Pollution Prevention and Abatement Handbook, 2007, pp. 404–407.
[2] J. G. Christopher, G. Kumar, D. F. Tesema, N. B. D. Thi, T. Kobayashi and T. Xu, ‘Bioremediation for Tanning Industry : A Future Perspective for Zero Emission’, Intech, Intech Open Access, 2016, pp. 92–102.
[3] D. Wang, S. He, C. Shan, Y. Ye, H. Ma, X. Zhang, W. Zhang and B. Pan,, ‘Chromium speciation in tannery effluent after alkaline precipitation : isolation and characterization’, J. Hazard. Mater., 2016, doi: 10.1016/j.jhazmat.2016.05.021.
[4] M. Rajasimman and G. Durai, ‘Biological Treatment of Tannery Wastewater-A Review’, J. Environ. Sci. Technol., vol. 4, no. 1, pp. 1–17, 2011, doi: 10.3923/jest.2011.1.17.
[5] A. A. Belay, ‘Impacts of Chromium from Tannery Effluent and Evaluation of Alternative Treatment Options’, J. Environ. Prot. vol. 1, pp. 53–58, 2010, doi: 10.4236/jep.2010.11007.
[6] B. I. Islam, A. E. Musa, E. H. Ibrahim, S. A. A. Sharafa, and B. M. Elfaki, ‘Evaluation and Characterization of Tannery Wastewater (1)’, J. For. Prod. Ind., vol. 3, no. 1, pp. 141–150, 2014.
[7] S. Irobekhian, R. Okoduwa, B. Igiri, C. B. Udeh, C. Edenta, and B. Gauje, ‘Tannery Effluent Treatment by Yeast Species Isolates from Watermelon’, Toxics, vol. 5, no. 6, pp. 1–10, 2017, doi: 10.3390/toxics5010006.
[8] E. Bernard and A. Ogunleye, ‘Evaluation of tannery effluent content in Kano metropolis , Kano State Nigeria’, Int. J. Phys. Sci., vol. 10, no. 9, pp. 306–310, 2015, doi: 10.5897/IJPS2014.4240.
[9] G. Lofrano, S. Meriç, G. E. Zengin, and D. Orhon, ‘Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review’, Sci. Total Environ., vol. 461–462, pp. 265–281, 2013, doi: 10.1016/j.scitotenv.2013.05.004.
[10] A. F. Desta, J. Nzioki, S. Maina, and F. Stomeo, ‘Molecular Biomonitoring of of Microbial Microbial Communities Communities in in Tannery Wastewater Treatment Plant for the Tannery Wastewater Treatment Plant for the Removal Removal of Retanning Chemicals of Retanning Chemicals’, Intech, 2017, pp. 141–155. http://dx.doi.org/10.5772/67349
[11] R. Jobby, P. Jha, A. K. Yadav, and N. Desai, ‘Biosorption and biotransformation of hexavalent chromium [ Cr ( VI )]: A comprehensive review’, Chemosphere, vol. 207, pp. 255–266, 2018, doi: 10.1016/j.chemosphere.2018.05.050.
[12] M. Kube, B. Jefferson, L. Fan, and F. Roddick, ‘The impact of wastewater characteristics , algal species selection and immobilisation on simultaneous nitrogen and phosphorus removal’, Algal Res., vol. 31, pp. 478–488, 2018, doi: 10.1016/j.algal.2018.01.009.
[13] P. M. Dellamatrice, M. E. Silva-stenico, L. A. B. de-Moraes, F. Marli and R. T. R. Monteiro, ‘Degradation of textile dyes by cyanobacteria’, Brazilian J. Microbiol., vol. 48, no. 1, pp. 25–31, 2016, doi: 10.1016/j.bjm.2016.09.012.
[14] S. Danazumi and M. H. Bichi, ‘Industrial Pollution and Implication on Source of Water Supply in Kano , Nigeria’, Int. J. Eng. Technol., vol. 10, no. 1, pp. 101–110, 2010.
[15] F. A. Oguzie and G. A. Okhagbuzo, ‘Concentrations of heavy metals in effluent discharges downstream of Ikpoba river in Benin City , Nigeria’, African J. Biotechnol., vol. 9, no. 3, pp. 319–325, 2010.
[16] G. Sibi, ‘Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris’, Green Energy Environ., vol. 1, no. 2, pp. 172–177, 2016, doi: 10.1016/j.gee.2016.08.002.
[17] F. Vendruscolo, G. Luiz, N. Roberto, and A. Filho, ‘International Biodeterioration & Biodegradation Biosorption of hexavalent chromium by microorganisms’, Int. Biodeterior. Biodegradation, pp. 1–9, 2016, doi: 10.1016/j.ibiod.2016.10.008.
[18] S. Goswami and D. Mazumder, ‘Treatment of Chrome Tannery Wastewater by Biological Process - A Mini Review’, Int. J. Environ. Ecol. Eng., vol. 7, no. 11, pp. 798–804, 2013.
[19] V. A. Ogugbuaja, A. J. Akan and J.C, Mosses E. A, ‘Assessment of Tannnery Industrial Effluents from Kano Metropolis, Nigeria’, J Appl. Sci., vol. 7, no. 19, pp. 2788–2793, 2007.
[20] B. B. Yusif, K. A. Bichi, O. A. Oyekunle, A. I. Girei, P. Y. Garba, and F. H. Garba, ‘A Review of Tannery Effluent Treatment’, Int. J. Appl. Sci. Math. Theory, vol. 2, no. 3, pp. 29–43, 2016.
[21] M. Chowdhury, M. G. Mostafa, T. K. Biswas, and A. K. Saha, ‘Treatment of leather industrial effluents by filtration and coagulation processes’, Water Resour. Ind., vol. 3, pp. 11–22, 2013, doi: 10.1016/j.wri.2013.05.002.
[22] J. Fettig, V. Pick, M. Oldenburg, and N. V. Phuoc, ‘Treatment of tannery wastewater for reuse by physico-chemical processes and a membrane bioreactor’, J. Water Reuse Desalin., vol. 7, no. 4, pp. 420–428, 2017, doi: 10.2166/wrd.2016.036.
[23] A. O. Adeyi, E. E. K. Igiri B. E., Okoduwa S. I. R., Idoko G. O., and Akabuogu E. P., ‘Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater : A Review’, J. Toxicol., pp. 1–16, 2018, doi: https://doi.org/10.1155/2018/2568038.
[24] R. C. Ofomata, M. O. Akharame and D. I. Olurunfemi, ‘Physicochemical Parameters and Heavy Metals Assessment of Effluent Physicochemical Parameters and Heavy Metals Assessment of Effluent Discharges from Some Industries in Benin City , Nigeria’, African Sci., vol. 18, no. 3, pp. 183–189, 2017.
[25] K. Mohammed, Z. S. Ahammad, P. J. Sallis, and C. R. Mota, ‘Energy-efficient stirred-tank photobioreactors for simultaneous carbon capture and municipal wastewater treatment’, Water Sci. Technol., vol. 69, no. 10, pp. 2106–2112, 2014, doi: 10.2166/wst.2014.123.
[26] K. Mohammed, Z. S. Ahammad, P. J. Sallis, and C. R. Mota, ‘Optimisation of red light-emitting diodes irradiance for illuminating mixed microalgal culture to treat municipal wastewater’, Trans. Ecol. Environ., vol. 178, pp. 263–270, 2014, doi: doi:10.2495/ 13WS 022.
[27] M. Manzoor, F. Tabssum, H. Javaid, and J. Iqbal, ‘Lucrative future of microalgal biofuels in Pakistan : a review’, Int. J. Energy Environ. Eng., vol. 6, no. 4, pp. 393–403, 2015, doi: 10.1007/s40095-015-0186-9.
[28] F. Marazzi, M. Bellucci, S. Rossi, R. Fornaroli, E. Ficara, and V. Mezzanotte, ‘Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions’, Algal Res., vol. 39, p. 101430, 2019, doi: 10.1016/j.algal.2019.101430.
[29] K. V. Ajayan, M. Selvarajua, P. Unnikannana & P. Sruthib, ‘Phycoremediation of Tannery Wastewater Using Microalgae Scenedesmus’, Int. J. Phytoremediation, vol. 17, pp. 907–916, 2015, doi: 10.1080/15226514.2014.989313.
[30] M. Bilal, T. Rasheed, and J. Eduardo, ‘Biosorption : An Interplay between Marine Algae and Potentially Toxic Elements — A Review’, Mar. Drugs, vol. 16, no. 65, pp. 1–16, 2018, doi: 10.3390/md16020065.
[31] G. C. Donmez, Z. Aksu, A. Ozturk and T. Kutsal ‘Comparative study on heavy metal Biosorption characteristics of some algae A comparative study on heavy metal biosorption characteristics of some algae’, Process Biotechnol., vol. 34, pp. 885–892, 1999.
[32] K. Mohammed, ‘Microalgal Photobioreactors for Carbon-Efficient Wastewater Treatment’, Newcastle University, 2013.
[33] O. Tricolici, C. Bumbac, and C. Postolache, ‘Microalgae – Bacteria System for Biological Wastewater Treatment’, J. Environ. Prot. Ecol., vol. 276, no. 1, pp. 268–276, 2014.
[34] I. Krustok, ‘Microbiological Analysis of Municipal Wastewater treating Photobioreactors’, No 196, Sweden, 2016.
[35] R. Godoy, L. Montenegro and L. Ardila, ‘Sorption Capacity Measurement of Chlorella Vulgaris and Scenedesmus Acutus to Remove Chromium from Tannery Waste Water Sorption Capacity Measurement of Chlorella Vulgaris and Scenedesmus Acutus to Remove Chromium from Tannery Waste Water’, in 2nd International Conference on Green Energy Technology, 2017, pp. 1–16.
[36] M. S. Mahmoud and S. A. Mohamed, ‘Calcium alginate as an eco-friendly supporting material for Baker ’ s yeast strain in chromium bioremediation’, HBRC J., vol. 13, no. 3, pp. 245–254, 2017, doi: 10.1016/j.hbrcj.2015.06.003.
[37] P. S. Subashini and P. Rajiv, ‘Chlorella vulgaris DPSF 01 : A unique tool for removal of toxic chemicals from tannery wastewater’, African J. Biotechnol., vol. 17, no. 8, pp. 239–248, 2018, doi: 10.5897/AJB2017.16359.
[38] M. Manzoor, R. Ma, H. A. Shakir. F. Tabssum and V. Q. Iqbal, ‘Microalgal-bacterial consortium: a cost-effective approach of wastewater treatment in Pakistan’, Punjab Univ. J. Zool, vol. 31, no. 2, pp. 307–320, 2016.
[39] S. Parwin, B. Kamaludeen, K. R. Arunkumar, S. A, and K. Ramasamy, ‘Bioremediation of chromium contaminated environments’, Indian J. Exp. Biol., vol. 41, pp. 972–985, 2003.
[40] M. Louarrat, A. N. Rahman, A. Bacaoui, and A. Yaacoubi, ‘Removal of Chromium Cr ( Vi ) of Tanning Effluent with Activated Carbon from Tannery Solid Wastes’, Am. J. Phys. Chem., vol. 6, no. 6, pp. 103–109, 2017, doi: 10.11648/j.ajpc.20170606.11.
[41] X. Chen, Z. Hu, Y. Qi, C. Song, and G. Chen, ‘Bioresource Technology The interactions of algae-activated sludge symbiotic system and its effects on wastewater treatment and lipid accumulation’, Bioresour. Technol., vol. 292, no. 92, p. 122017, 2019, doi: 10.1016/j.biortech.2019.122017.
[42] Y. Wang, S. Ho, C. Cheng, W. Guo, D. Nagarajan, and N. Ren, ‘Bioresource Technology Perspectives on the feasibility of using microalgae for industrial wastewater treatment’, Bioresour. Technol., vol. 222, pp. 485–497, 2016, doi: 10.1016/j.biortech.2016.09.106.
[43] L. Sun, L. J. L. Sun, Z. Wei, T. Yu, Z. Jun and L. Jia, ‘Performance and microbial community analysis of an algal-activated sludge symbiotic system : Effect of activated sludge concentration’, J. Environ. Sci., vol. 76, pp. 121–132, 2019, doi: https://doi.org/10.1016/j.jes.2018.04.010.
[44] K. Mohammed and C. Mota, ‘Microalgae and Sustainable Wastewater Treatment : A Review’, Bayero J. Pure Appl. Sci., vol. 11, no. 1, pp. 408–419, 2018, doi: http://dx.doi.org/10.4314/bajopas.v11i1.65S.
[45] L. T. Arashiro, ‘Algal-bacterial consortia for nitrogen removal from wastewater : Experimental and modeling studies’, Thesis. Ghent University, Belgium, 2015.pp 1-71
[46] M. Solé-bundó, M. Garfí, V. Matamoros, and I. Ferrer, ‘Science of the Total Environment Co-digestion of microalgae and primary sludge : Effect on biogas production and microcontaminants removal’, Sci. Total Environ., vol. 660, pp. 974–981, 2019, doi: 10.1016/j.scitotenv.2019.01.011.
[47] S. Zhu, L. Qin, P. Feng, C. Shang, Z. Wang, and Z. Yuan, ‘Treatment of low C/N ratio wastewater and biomass production using co-culture of Chlorella vulgaris and activated sludge in a batch photobioreactor’, Bioresour. Technol., 2018, doi: 10.1016/j.biortech.2018.10.034.
[48] S. Lage, Z. Gojkovic, C. Funk, and F. G. Gentili, ‘Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy’, Energies, vol. 11, no. 664, pp. 1–30, 2018, doi: 10.3390/en11030664.
[49] A. Lovrinovic and T. Juhna, ‘Review on Challenges and Limitations for Algae-Based Wastewater Treatment’, Constr. Sci., vol. 20, pp. 17–25, 2018, doi: 10.2478/cons-2017-0003.
[50] H. Kamyab, F. Friedler, J. J. Klemeš, and S. Chelliapan, ‘Bioenergy Production and Nutrients Removal by Green Microalgae with Cultivation from Agro-Wastewater Palm Oil Mill Effluent ( POME ) - A Review’, Chem. Eng. Trans., vol. 70, pp. 2197–2202, 2018, doi: 10.3303/CET1870367.
Published
2020-07-30
How to Cite
DABAI, Aminu Isiya; MOHAMMED, Kasim. CHROMIUM REMOVAL FROM TANNERY WASTEWATER: A REVIEW. Platform : A Journal of Science and Technology, [S.l.], v. 3, n. 1, p. 63-73, july 2020. ISSN 2637-0530. Available at: <http://myjms.moe.gov.my/index.php/pjst/article/view/8483>. Date accessed: 11 aug. 2020.